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Abstract  

One of the purposes of principal component analysis is to reduce the dimensionality of the set of variables. Several approaches 

have been suggested by different authors for determining the number of principal components that should be kept for further 

analysis. In this paper we present a graphical procedure depending on the computation of the coefficient of multiple determination 

of each variable when this variable is regressed on the other variables.  A comparison of our criterion with the eigenvalue-one 

criterion, the Scree test criterion and the percentage criterion is given through examples. Our criterion can be considered as a 

lower bound for principal components retained. It is a precise one, in the since that when different people analyze the same data 

they will obtain the same results 

 Keywords:  Eigenvalues, Scree Test, Communality, Coefficient of Multiple Determination

1. Introduction 

Principal component analysis (PCA) is a technique 

that is useful for the compression and classification of 

data. The dimensionality reduction of multivariate 

data attract the attention of many authors. The main 

idea depends on finding a new set of variables, 

smaller than the original ones, which retains most of 

the sample’s information. Information means the 

variation presented in the sample and given by the 

correlations between the original variables. This new 

set of variables, called principal components, are 

uncorrelated. Several criteria in the literature have 

been proposed for determining the number of 

principal components (pc's) that should be kept for 

further analysis. A large sample test for hypothesis 

that the last roots are equal was developed by Bartlett 

(1950). This test can be performed after each stage. If 

the remaining roots are not significantly different 

from each other, the procedure is terminated at that 

point. Most practitioners would agree that Bartlett's 

test ends up retaining too many pc's, that is, it may  

retain pc's that explain very little of the total variance. 

Kaiser (1960) used a correlation matrix and proposed 

dropping principal components whose eigenvalues are 

less than one. His idea is based on the fact that if the 

eigenvalue is less than one, then the corresponding 

principal component will provide less information 

than that provided by a single variable. Jolliffe (1972) 

claimed that Kaiser’s criterion is too large. He 

suggested using a cutoff on the eigenvalues of 0.7. 

Other authors noted that if the largest eigenvalue is 

close to one, then holding to a cutoff of one may 

cause useful principal components to be dropped. 

However, if the largest eigenvalue is several times 

larger than one, then those near one may be 

reasonably dropped. Cattell (1966) proposed the Scree 

test, which is a graphical technique. With the Scree 

test one plots the eigenvalues against the components 

numbers and retains the components which the line in 

the Scree graph is steep to the left but not steep to the 

right. Studying this chart is probably the most popular 

criterion for determining the number of principal 

components, but it is subjective, causing different 

people to analyze the same data with different results. 

Also it can be considered as a graphical substitute for 

the significance test. The percentage of the total 

variation criterion (Manly 1994), (called also 

''proportion of trace explained'' criterion in Jackson 

(1991)), is based on the idea that a certain percentage 

of the variation that must be accounted for is preseted, 

then enough principal components are retained so that 

this percentage of variation is achieved. Usually, 

however, this cutoff percentage is used as a lower 

limit. That is, if the designated number of principal 

components do not account for at least 50% of the 

variance, then the whole analysis is aborted. Another 

procedure (Jackson 1991) is based on the amount of 

the explained and unexplained variability. In this 

procedure, one determines in advance the amount of 

residual variability that one is willing to tolerate. 

Characteristic roots and vectors are obtained until the 

residual has been reduced to that quantity. This 

procedure should be carried out after the significance 

test. Parallel Analysis is a Monte Carlo simulation 

technique that aides researcher in determining the 

number of factors to retain in principal component 

and exploratory factor analysis. This technique 
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provides a superior alternative to other techniques. 

Horn (1965) suggested generating a random data set 

having the same number of variables and observations 

as the set being analyzed. These variables should be 

normally distributed but uncorrelated. A Scree plot of 

these roots will generally approach a straight line over 

the entire range. The intersection of this line and the 

Scree plot for the original data should indicate point 

separating the retained and deleted pc's. The reasoning 

being that any roots for the real data that are above the 

line obtained for the random data represent roots that 

are larger than they would be by chance alone. 

Ledesma, and Pedro V. (2007) described an easy to 

use computer program capable of carrying out parallel 

analysis- the ViSta-PARAN program. Its user 

interface is fully graphic and includes a dialog box to 

specify parameters. In this article we introduce a 

graphical procedure for determining the number of 

principal components retained for further analysis. 

Our approach is based on the fact that the 

determination of optimal number of pc's retained 

needs a measure that takes into account the 

intercorrelation between the variables and the 

information redundancy. We see that the coefficient 

of multiple determination is a good measure for 

detecting the presence of intercorrelation within a set 

of variates. It also discloses the important pc's for a 

given variable through the determination of the highly 

correlated variables. Guttman (1953) used the word 

"index" to refer to the square of a correlation 

coefficient. He investigated possibilities to capitalize 

the structural of the multiple-correlation approach. He 

also studied the common and alien parts of the 

observed variates as defined by multiple correlation. 

In our procedure the coefficients of multiple 

determination of  each variable when this variable is 

regressed on the other variables are computed, 

arranged in decreasing order, then the cumulative 

proportions  are computed and graphed against the 

components numbers. The point of intersection of this 

curve with the curve of eigenvalues against the 

components numbers is considered. All components 

before this point are retained for further analysis and 

the others are dropped. A comparison of our criterion 

with the eigenvalue-one criterion, the Scree test 

criterion and the percentage criterion is given through 

examples. Our criterion may be considered as a lower 

bound for pc's retained. It is a precise one, in the since 

that when different people analyze the same data they 

will obtain the same results. The logic of the proposed 

criterion is given in the following section.  

 

 

2. The Rationale of the Criterion 

 

          Let R  be the sample correlation matrix of the 

normally distributed random vector 
      

],....,,[ 21 PXXXX    

for n  individuals.  Let  1  , 2 , . . ., p  be the 

eigenvalues of  R  and without loss of generality 

consider 0....21  p . The values of the 

principal components are calculated from the 

standardized variables 
*X  where 

,*

j

jij

ij
S

XX
X


   







n

i

jijj XX
n

S
1

22 )(
1

1
 

and pjX
n

X
n

i

ijj ,...,2,1,
1

1

 


. The  thj   

principal component is the linear combination  

jY ju *X  which is obtained by maximizing 

)var( jY where jjjj uRuXuY  )var()var( *
   

subjected to ju 1ju    and iu 0ku , and          

ju
 

],[ ,...,21 pjjj uuu   

is the  eigenvector corresponding to the eigenvalue  

j . Let us denote the  pp  orthogonal matrix, 

whose columns are the eigenvectors corresponding to 

the eigenvalues sj '   of the sample correlation matrix  

R , by U , where ]...,,,[ 21 PuuuU   and the  

)1( p vector of  pc's by Y . Then 
*XUY  . The 

)( pp covariance matrix of  Y , denoted by   , is 

given by ),...,,( 21 pDiag  . Notice that the 

diagonal matrix  results from diagonalizing the 

matrix R  by the orthogonal matrix U . i.e., 

RUU  . This can also be written as UUR   

. It can be shown that (Jackson  1991)  
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 is the amount of variation accounted 

by the first m  pc's to the total variation. Now the p  

principal components pYYY ,...,, 21 , which are linear 

combinations of the standardized p  variables 

**

2

*

1 ,...,, pXXX , have the form  

            
piXuXuXuY ppiiii ,...,2,1,... **

22

*

11 

                    (1)                                                      

This transformation from 
*X values to Y values is 

orthogonal, so that the inverse relationship is simply 

              

pjYuYuYuX pjpjjj ,...,2,1,...2211

* 

  

Let m be the hypothetical number of pc's that have 

most of the variability of the standardized variables 

sX *'
. So the last equation becomes  

              

pjeYuYuYuX jmjmjjj ,...,2,1,...2211

* 

                    
(2)                        

where je  is a linear combination of the pc's 1mY  to 

pY  . Now we need to scale the principal components 

mYYY ,...,, 21 to have unit variances. So Equation (2) 

can be rewritten as 

               

jmmjmjjj eYuYuYuX  **

222

*

111

* ... 
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Y

Y
i

i
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
   and if we put 

ijiji uv  , which is the correlation coefficient 

between jX  and iY  we get  
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22
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 Since 1)var( * jX and 1)var( * iY , for 

pj ,,2,1  and mi ,,2,1   then  
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1
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Thus  1
1

2 


m

i

jiv  is the part of the variance of 
*

jX that 

is related to 
**

2

*

1 ,...,, mYYY , (called the communality of 

*

jX in the sense of factor analysis (Manly 1994))while 

)var( je  is the part of the variance of 
*

jX that is 

unrelated to 
**

2

*

1 ,,, mYYY  . It can be shown that, 

(Jackson 1991), the coefficients of multiple 

determination of the standardized variables sX j

'*
 

when they are regressed on the retained scaling 
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principal components 
**

2

*

1 ,...,, mYYY
 
(denote by 
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jmR ) 

is equal to the part of variance of  sX
و

j
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to miYi ,...,2,1,*   i.e., 
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(5)          

That is to say, 
2*

jmR measures the proportionate 

reduction of total variation in 
*

jX  associated with the 

use of the m  scaling principal components 

**

2

*

1 ,...,, mYYY (Neter et al. 1983). So Equation (4) 

becomes 

                                  )var(1 2*

jjm eR                            

,  pj ,,2,1                                               (6)                                                    

 Increasing m will increase the part of the variance of 

sX j

*'

 
that is related to 

**

2

*

1 ,...,, mYYY and 

consequently will increase 
2*

jmR
 
and at the same time 

will decrease )var( je . Figure1 presents the graph of 

2*

jmR against components numbers pm ,...,2,1 . It is 

clear that as m  increases 
2*

jmR  increases and 

approaches one. Since 10
2*  jmR , then a near zero 

2*

jmR implies that 
*

jX  is weakly related to 

**

2

*

1 ,...,, mYYY . Also  a near one 
2*

jmR  implies that 

*

jX is strongly related to 
**

2

*

1 ,...,, mYYY . If 

each
*

jX for pj ,...,2,1  is strongly related to 

**

2

*

1 ,...,, mYYY , but not related to 
**

2

*

1 ,...,, pmm YYY  , 

i.e., if all 
2*

jmR , pj ,...,2,1 are near one then 

**

2

*

1 ,...,, mYYY is the best choice for the pc's retained 

(Manly 1994).  

 

Figure (1)  of  and eigenvalues 

For a given variable 
*

jX , if we plot the curve 

2*

jiR ,  pmi j ,...,,...,2,1 , which is increasing, 

against components numbers i  together with the curve 

of eigenvalues i , pi ,...,2,1   , which is decreasing 

one against its components numbers i , we find that 

they intersect at a point for which it indicates the 

optimal numbers of pc's to retain (see Figure 1). At the 

point of intersection 
jj mjmR 
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then Equation (6) 

becomes            
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2 convergence to one, that is,  the point 

of intersection  should be close to one. Which means 

that 
*

jX is strongly related to 
**

2

*

1 ,...,,
jmYYY . From all 

above  we conclude  that  the m -component model of 

Equation (3) is a good fit of 
*

jX . 
  
 

Now, if we do the same plot for all  sX j '
*

 , 

pj ,...,2,1 , we obtain different points of 

intersections. Here we face two problems. First, which 

one of these points of intersections we consider. 

Second as long as the number of variables increases, 
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the computations of 
2*

jiR , pji ,...,2,1,  , will be 

tedious. So we try to find another measure replacing all 

these quantities and having the same range as 
2*

jiR . 

On other hand if we let V be the pp  

matrix of correlation coefficients of sX j '
*

and 

pjisYi ,...,2,1,,
,*  . It is clear that jiij vv  for 

ji  and RVV  is the source of the explained 

correlations among the variables and  VV . It can 

be shown that 
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Equation (7) means that the variation accounted by the 

first m  pc's is equal to the sum over all coefficients of 

multiple determination of sX j '
*

, pj ,...,2,1 ,
2*

jiR . 

Also if we consider 
**

2

*

1 ,...,, mYYY are the best choice 

then the correlation between 
*

jX and 
*

kX  is given 

approximately by  

              



m

i

kijikmjmkjkj vvvvvvvv
1

2211 ...                                                                             

This means that  
*

jX and 
*

kX  can only be highly 

correlated if and only if  they have high loading on the 

same
**

2

*

1 ,...,, mYYY i.e.,
 

2*

jmR and 
2*

kmR  are large. So to 

obtain the optimal number m  of the retained pc's we 

need to determine all highly correlated variables 

sX j '
*

that have high loading on the same 

**

2

*

1 ,...,, mYYY . 

 So we see that the coefficients of multiple 

determination of sX j '
*

when they are regressed on the 

other variables, denoted by 

pjRR
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 is a 

good measure for detecting the presence of 

intercorrelation between variables. It can also replace 
2*

jiR  to overcome the above two problems. As 
2*

jiR , 

10
2

 jR , so a near zero  
2

jR means that 
*

jX is 

weakly correlated with the other sX '*
 and a near one 

2

jR means that 
*

jX is highly correlated with the other 

sX '*
.  Notice that 

2

jR  can be computed using 

different formulas.  

So, as we arrange sj ' in decreasing order to 

capture the maximum amount of variation accounted 

by the first m  pc's, we arrange  sRj '
2

 in decreasing 

order say 
2

)(

2

)2(
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)1( ... pRRR  and take the sum 

over the first  m   sR j '
2

)( . Since this sum will exceed 

one and the measure we need should have the range 

[0,1], so it is evident to relate this sum to the total sum 

of  sR j '
2

)( , pj ,...,2,1 . That is, we compute 
2

mCR
 

given in the following equation 
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(10) 

Plotting the curve of 
2

mCR for pm ,...,2,1 , which 

is an increasing one, and the curve of eigenvalues  

sj ' , which is decreasing one, we find that as long as  

2

mCR is increasing to approach the maximum value 

one, the variability of the components (eigenvalues) are 

decreasing to approach zero. This means that the 

optimal number of pc's retained will be before the point 

of intersection.  

 

The following lemma shows that 
2

jR is a 

function of all piRim ,...,2,1,2*  . Consequently  

2

mCR  given in Equation (10) is a function of all 
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piRim ,...,2,1,2*  . The proof of lemma is given in 

the appendix.  

   

Lemma 

Considering the standard correlation model  
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where jjc is the jth  diagonal element of  the inverse of the 

matrix R .        
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                  (Jackson 1991)                                                                    

(9) 

Jackson (1991) noticed that two or more variables 

are highly correlated i.e., two or more 
2

jR will be near one, 

resulting in one or more eigenvalues being positive but quite 

small and we drop the pc's corresponding to them. 

 

and 
*ˆ
i is the estimate of 

*

i  

The Algorithm   

Now we can state the steps of our method 

 

1. Standardize the variables pXXX ,...,, 21  to have zero 

means and unit variances. Denote then by 
**

2

*

1 ,...,, pXXX    

 

2. Calculate the correlation matrix R  of 

pXXX ,...,, 21  which is a covariance 

matrix of 
**

2

*

1 ,...,, pXXX . 

 

3. Find the eigenvalues  1  , 2 , . . ., p and 

the corresponding eigenvectors 

puuu ,...,, 21 of R . 

 

4. Compute the inverse of R . 

5. Calculate the coefficient of multiple 

determination 
2

jR for all 

*

jX pj ,...,2,1,  , using Equation (8) or 

(9).   

 

6.    ِ Arrange the 
2

jR  in decreasing order, say 

2

)(

2

)2(

2

)1( ... pRRR  .  

 

7. Calculate 
2

mCR  using Equation (10). 

 

8. Graph the curves of 
2

mCR  and m  

pm ,...,2,1,   against the components 

numbers.  

 

9. The number of components before the point 

of intersection of the two curves is the 

number of principal components retained.     
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3. Illustrating Examples 

To illustrate our criterion and to compare it with the other 

criteria we consider the following examples  

Example (1)  

 
Consider the data (Manly 1994) of the percentages 

of the labour force in nine different types of industry for 26 

European countries. The correlation matrix for the nine 

variables is shown in Table 1. Since the overall values in 

this matrix are not particularly high, one could say that 

several principal components will be required to account for 

the variation but this is not true since the examination of 

simple correlation coefficients will not necessarily disclose 

the existence of relations among group of independent 

variables. The eigenvalues of the correlation matrix are 

shown in Table 2 second column. It can be shown that, 

using Kaiser criterion, only the first three components are 

important because they are the only ones with eigenvalues 

greater than 1.00, but ‘rule of thumb’ suggests that four 

principal components should be considered, since the fourth 

eigenvalue is almost equal to the third. So either three or 

four principal components can reasonably be allowed. For 

the Scree graph of Cattell,  Figure 2 shows a plot of the 

eigenvalues (variation) against the components numbers 

presented in Table 2 column 1 and 2. It is clear that there are 

two obvious breaks in the plot that separates the meaningful 

components from the trivial components. There is a gentle 

change of steepness at the third component and another 

sharp change of steepness at the fourth component. This 

example illustrates that the Scree graph approach for 

deciding the number of principal components is very 

subjective. The results of the percentage of the total 

variation criterion is given in Table 2 third column. It is 

clear that 75% of the total variation is captured by three 

components and 86% of the total variation is captured by 

four components. Table 2 fourth column presents the results 

of 
2

mCR and Figure 3 presents the graph of 
2

mCR  and the 

s' against the components numbers. We see that the two 

curves intersect after the fourth component. So we decide 

precisely that four principal components must be retained. 

 

Example (2) 

 

  Consider the audiometric example analyzed in 

Jackson (1991; chap. 5). The data consists of measurements 

of lower hearing threshold on 100 men.   Observations were 

obtained, on each ear, at frequencies 500, 1000, 2000 and 

4000Hz, so that eight variables were recorded for each 

individual. The correlation matrix of the eight variables is 

given in Table 3. Table 4 presents the eigenvalues, m the 

cumulative proportion of variation, mC , and the 
2

mCR .  

Figure 4 presents the graph of 
2

mCR  and m against the 

components numbers. The two curves intersect after three 

components, so according to our criterion we retain three 

principal components only. According to Kaiser criterion, 

there are two eigenvalues greater than one and since the 

third eigenvalue is almost equal to one so either two or three 

pc's can be retained. It is clear, also, that two components 

capture only 69% of the total variation while three 

components capture 82% of the total variation. The Scree 

graph of m shows that there is a sharp change of steepness 

at the second and at third component and a gentle change of 

steepness at fourth component so either two or three or four 

components can be retained.  

   

4. A Simulation Study 

 We have made a simulation study of normally 

distributed data with different values of  means , variances 

and different values of correlation coefficients. We have 

taken different sample size (30,50,100) and  different values 

of p variables (4,6,7,8,9,10,12,20), (the simulation study is 

available upon request). From this simulation we observe 

that  
1. Our criterion gives precise results in the sense that 

any one can obtain the same results.  

2. Our criterion takes into account the useful 

eigenvalues that are less than one. 

3. If we consider the value 0.9 close to one. Kaiser's 

criterion gives the same results as that of our 

criterion.  

4. The numbers of pc's retained by Kaiser's criterion or 

by our criterion capture at least 70% of the total 

variation using the percentage criterion. 

Using Scree test criterion the steepness is not clear in some 

cases 

5. Conclusion 

 
In this paper, we introduce a criterion depending on 

computing the cumulative proportion of the coefficient of 

multiple determination of each standardized variable. A 

number of studies have been carried out to compare our 

criterion with some other criteria (The eigenvalue-one 

criterion, the Scree test and the percentage criterion). One of 

these studies was a simulation study. From these studies we 

conclude that, our criterion gives a precise number of pc's 

retained. It also captures  amount of variability greater than 

the other methods. In addition it takes into account the 

components with variance smaller than one but important.      
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Table (1) The correlation matrix for percentages 

employed in nine industry groups in 26 countries in 

Europe, in lower diagonal form.(Manly 1994) 

 

 

Table (2). Eigenvalues, cumulative proportion, and 

2

mCR of the correlation matrix of Table 1 

 

 

Table (3) The correlation matrix of audiometric data 

(Jackson 1991) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 AGR MIN MAN PS CON SER FIN SPS TC 

Agriculture  1.000         

Mining  0.036   1.000        

Manufacturing -0.671   0.445   1.000       

Power supplies -0.400   0.406   0.385 1.000      

Construction -0.538 -0.026   0.495 0.060 1.000     

Service industries  -0.737 -0.397   0.204 0.202 0.356 1.000    

Finance -0.220 -0.443 -0.156 0.110 0.016 0.366 1.000   

Social &personal services -0.747 -0.281   0.154 0.132 0.158 0.572 0.108 1.000  

Transport & communications -0.565   0.157   0.351 0.375 0.388 0.188 -0.246 0.568 1.00 

Components      

numbers 
m  mC  

2

mCR  

1 3.487 0.387 0.11278 

2 2.130 0.624 0.22553 

3 1.099 0.746 0.33828 

4 0.995 0.857 0.45097 

5 0.543 0.917 0.56352 

6 0.383 0.960 0.67556 

7 0.226 0.985 0.78739 

8 0.137 1.000 0.89810 

9 0.000 1.000 1.00000 

 Left Ear    Right Ear   

   500 1000  2000 4000 500 1000 2000 4000 

     1 0.78 0.40 0.26 0.70 0.64 0.24 0.20 

 1 0.54 0.27 0.55 0.71 0.36 0.22 

  1 0.42 0.24 0.45 0.70 0.33 

   1 0.18 0.26 0.32 0.71 

    1 0.66 0.16 0.13 

     1 0.41 0.22 

      1 0.37 

       1 
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Appendix 
 

Proof of the lemma  

 

To prove that 
2

jR is a function of all 

piRim ,...,2,1,2*  , where  

2

,...,,,...,,/

2
**

1
*

1
*
2

*
1

*
pjjj XXXXXXj RR



  and  
2

,...,,/

2*
**

2
*
1

*
mi yyyXim RR  , 

consider the standard correlation model  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
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


p

ji
i

kjkiikj eXX
1

****    , 

nkpj ,...,2,1,,...,2,1   

 

 

where 
*

i  is the parameter of the model,   
*

kje is the error 

and ,
1

*






nS j

jkj

kj  

      

The coefficient of multiple determination of 
*

jX  given 

**

1

*

1

*

1 ,...,,,..., pjj XXXX   is given as
     

  
                         





p

ji
i

iijj rR
1

*2 ̂ ,                                                                                                        

(11) 
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Where 
*ˆ
i is the estimate of 

*

i and ijr is correlation 

between 
*

jX and 
*

iX .Given that 
**

2

*

1 ,...,, mYYY are the best 

choice of pc's then ijr can be given approximately as  

                         



m

k

ikjkij vvr
1

               (Manly 1994)                                                                     

(12) 

Now let 

                        
222 )(2 ikjkikjkikjk vvvvvv   

                     



m

k

ikjkikjkikjk

m

k

vvvvvv
1

222

1

)(
2

1
                                                                     

(13) 

Substituting Eq. (13) in Eq. (12) then ijr can be written as  
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2

1

2
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From Eq. (5), we get  
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
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1
                                                                            

(14) 

   Substituting Eq.(14) in Eq.(11) we get                          
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then 
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p

h

hj tRaR 


2*

1

2
   ; 
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1
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Which means that  
2

jR is a function  of all 

piRim ,...,2,1,2*      
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